Heterodimerization of p45–p75 Modulates p75 Signaling: Structural Basis and Mechanism of Action
نویسندگان
چکیده
The p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily, is required as a co-receptor for the Nogo receptor (NgR) to mediate the activity of myelin-associated inhibitors such as Nogo, MAG, and OMgp. p45/NRH2/PLAIDD is a p75 homologue and contains a death domain (DD). Here we report that p45 markedly interferes with the function of p75 as a co-receptor for NgR. P45 forms heterodimers with p75 and thereby blocks RhoA activation and inhibition of neurite outgrowth induced by myelin-associated inhibitors. p45 binds p75 through both its transmembrane (TM) domain and DD. To understand the underlying mechanisms, we have determined the three-dimensional NMR solution structure of the intracellular domain of p45 and characterized its interaction with p75. We have identified the residues involved in such interaction by NMR and co-immunoprecipitation. The DD of p45 binds the DD of p75 by electrostatic interactions. In addition, previous reports suggested that Cys257 in the p75 TM domain is required for signaling. We found that the interaction of the cysteine 58 of p45 with the cysteine 257 of p75 within the TM domain is necessary for p45-p75 heterodimerization. These results suggest a mechanism involving both the TM domain and the DD of p45 to regulate p75-mediated signaling.
منابع مشابه
Structural and Mechanistic Insights into Nerve Growth Factor Interactions with the TrkA and p75 Receptors
Nerve growth factor engages two structurally distinct transmembrane receptors, TrkA and p75, which have been proposed to create a "high-affinity" NGF binding site through formation of a ternary TrkA/NGF/p75 complex. To define a structural basis for the high-affinity site, we have determined the three-dimensional structure of a complete extracellular domain of TrkA complexed with NGF. The comple...
متن کاملChange Partners, Regrow an Axon
Axons rarely regrow after a severe spinal cord injury, in part because of inhibitory signals associated with myelin, which surrounds and insulates the axon. These signals bind to the Nogo receptor, which can then bind to a variety of co-receptors, including a protein called p75. Together, this complex triggers a cascade of intracellular signals that ultimately inhibits axonal sprouting and prev...
متن کاملTyrosine phosphorylation and activation of NADPH oxidase in human neutrophils: a possible role for MAP kinases and for a 75 kDa protein.
Challenge of neutrophils with concanavalin A (ConA), formyl-methionyl-leucyl-phenylalanine (FMLP), and phorbol 12-myristate 13-acetate (PMA) induced the tyrosine phosphorylation of several proteins. Among these proteins we have identified two mitogen-activated protein kinase (MAPK) isoforms of 43 kDa (p43 MAPK) and 45 kDa (p45 MAPK) molecular mass. Moreover here we show that: (1) FMLP induced t...
متن کاملبررسی تغییرات فاکتور نروتروفیکی BDNF و گیرندههای آن (P75, TrK-B) پس از قطع عصب سیاتیک در نوزاد موش صحرایی
Background & Objective : As apoptotic cell death plays an important role in natural development and many pathologic conditions such as cancer and neurodegenerative diseases, understanding of its molecular mechanisms can be useful in designing new therapeutic strategies. In present study following induction of apoptosis in spinal motoneurons, expression of neurotrophic factor BDNF, and its rec...
متن کاملDeprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy
During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...
متن کامل